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SUMMARY

We have extended our virtual laboratory for internal wave motions (Int. J. Numer. Meth. Fluids 2005;
47:1369–1374) to the case of rotating fluids on an equatorial �-plane. A virtual wave-maker is introduced
via a time-dependent coordinate transformation in the meridional direction, represented by two lateral
boundary meanders. The technique is consistently incorporated into the numerical algorithm of the
nonhydrostatic model EULAG. The modelling framework is applied in simulations of equatorial wave
motions to enhance our understanding of the Madden–Julian oscillation (MJO). The simulation of a
realistic MJO in global circulation and climate models is a continuing challenge—in part, due to the
failure of existing theories to explain the ubiquitous modelling difficulties of the phenomenon. Virtual
laboratory experiments appear ideal complementary tools to isolate and study particular geophysical flow
structures. In these laboratory-scale ‘climate’ simulations we observe eastward propagating low-frequency
horizontal structures consistent with Rossby solitary wave theory, representing a particular solution of the
Korteweg–de Vries equation for the evolution of the wave amplitude under a given forcing. The latter
extends the linear shallow water theory—commonly used to explain different modes of equatorial wave
motions—to the weakly nonlinear regime. One important outcome of our simulations is the finding that
these structures depend on strong stratification, and may be easily destroyed or weakened if substantial
near-surface perturbations and associated vertical motions exist. This could play a role in the failure to
simulate a realistic MJO, but it may also provide an explanation why solitary waves are not as readily
observed in oceans as they are in models and theory. Ultimately, our research aims at constructing a
simplified dynamical apparatus to reproduce MJO-like structures in a laboratory analogue, in the spirit of
the Plumb–McEwan experiment for the quasi-biennial oscillation and vis-a-vis its numerical equivalent.
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1. INTRODUCTION

The Madden–Julian oscillation (MJO) [1] is the main intraseasonal atmospheric fluctuation in the
equatorial troposphere affecting weather in large parts of the world. Polynesian seamen are believed
to have used the phenomenon to sail eastward in the trade wind-dominated equatorial Pacific 4500
years ago [2]. Despite substantial efforts a reliable forecasting of the MJO and understanding its
mechanisms remain key challenges in atmospheric science. Diabatic processes associated with
tropical convection and two-way atmosphere–ocean interaction are generally believed to be crucial
in explaining the MJO. A number of theories have been put forward to explain the life cycle of
MJO events, which has been comprehensively reviewed in [2]. Incorporating elements from various
theories, we synthesize the importance of the interaction and feedback processes of convection,
large-scale dynamics, and surface fluxes. The complexity of the processes involved—due to their
multi-scale nature [3] ranging from micro to global scales—render the MJO an intriguing problem
in fluid dynamics, not least because of its appearance as a solitary structure and the inherent
difficulty to model it with state-of-the-art global numerical weather prediction and climate models.

Based on the experience [4, 5] in modelling the laboratory analogue of the quasi-biennial oscil-
lation [6]—an equally intriguing wave-driven equatorial phenomenon—we explore the possibility
of a virtual laboratory experiment for the MJO. To further the understanding of the principal mech-
anism underlying the MJO dynamics we conduct a series of large-eddy simulations of rotational
flows on a zonally periodic equatorial �-plane, using the Eulerian/semi-Lagrangian, nonoscillatory,
forward-in-time (NFT), nonhydrostatic model EULAG; see [7] and references therein. External
heating is imposed (optionally) at the bottom and/or at the meridional boundaries of the domain. In
particular, we explore sensitivities of numerical solutions to variations in meridionally undulating
lateral boundaries that induce Rossby waves, mean shear, and time variability of the zonal-mean
zonal flow. The undulating boundaries are incorporated into the numerical algorithm via time-
dependent coordinate transformations in the meridional direction [7, 8]. Such undulations can
generate long-lived horizontal structures [9], which resemble a robust low-wavenumber and low-
frequency signature in the observed wave spectra, reminiscent of the MJO. We test the hypothesis
that for long time- and length scales MJO-like structures may propagate eastward as a result of
weakly nonlinear externally forced wave dynamics. There have been earlier attempts to investi-
gate the role of nonlinearity for low-frequency equatorial waves [10, 11], but their findings were
either negative or inconclusive. More recently, there have been attempts to explore the weakly
nonlinear regime based on the forced Korteweg–de Vries equation [12], which may be rigorously
derived from the quasi two-dimensional system described in the next section. Rossby solitary
waves represent a special solution of this system given the right balance between nonlinearity
and Rossby wave dispersion [13]. These solitary structures may propagate eastward under certain
circumstances. What makes this theory particularly attractive is that it extends the linear shallow
water theory—commonly used to explain different modes of equatorial wave motions—to the
weakly nonlinear regime. Notably, most or all spectral signals of convectively coupled equatorial
waves can be explained via the linear theory [14], except one of the most dominant low-frequency
spectral peaks, that is the MJO per se.

2. THE NUMERICAL MODEL

The numerical model set-up is similar to the set-up in [5], notably with an advantage compared with
actual laboratory experiments, in which the emulation of equatorial dynamics and the beta effect
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in particular is difficult [15]. The equations of motion for a rotating, density-stratified Boussinesq
fluid are

∇ ·(�0v) = 0

Dv
Dt

= −∇�′+g
�′

�0
−f×v′+Fv (1)

D�′

Dt
= −v ·∇�e+F�

Here, the operators D/Dt , ∇, and ∇· symbolize the material derivative, gradient, and divergence;
v denotes the velocity vector; v′, �′, and �′ denote, respectively, velocity, density and normalized-
pressure perturbations with respect to a prescribed balanced ambient state with geostrophic wind
ve and linearly stratified �e profile; f and g symbolize the vectors of the ‘Coriolis parameter’ and
gravity (both vertically oriented), where ‖f‖= f0+�y with f0 and � constant; �0 denotes a uniform
reference density. Frictional terms at q= y, z-boundaries are of the form F�(q) :=�−1

� e−q/h(�−�b)

and Fv(q) :=�−1
v e−q/h(v−vb), with subscript b denoting a prescribed boundary value; time scales

are �� =�z2/� and �v=0.125�� (assuming diffusion of heat in water, �=1.39×10−7m2 s−1) and
height scale h=2�z, where �z is the vertical gridsize. Given the model’s formulation in density,
heating is included indirectly via the gradient of density at the lower boundary, which induces
convective vertical motions of Rayleigh–Bénard type. The frictional boundary layer is emulated
by the term Fv in the momentum equation in (1).

Equations (1) are cast in a time-dependent curvilinear framework [7, 8], employing the similarity
transformation

t= t, x= x, y= y0
y− yS(x, y, t)

yN (x, y, t)− yS(x, y, t)
, z= z (2)

Unless stated otherwise, the meridional boundaries of the equatorial �-plane simulations are given as

yS(x, y, t)=0.5�(sin(kx x−�1t)+sin(kx x−�2t)) (3)

and yN (x, y, t)= y0− yS(x, y, t), with domain size x0=4.3m and y0=4m, amplitude �=0.2,
kx =2�s/x0 with mode s=6, and forcing frequencies �1=2�/120s−1, and �2=2�/100s−1,
respectively. Transformation (2) allows for time-dependent boundary forcings, yN (x, y, t) and
yS(x, y, t), free of small-amplitude approximations. It describes a translating and pulsating meander
(a similar forcing is provided in case (d) of [9]) and may be understood as a sophisticated wave-
maker for virtual laboratory experiments.

The governing equations (1) are integrated numerically in the transformed space using a second-
order-accurate, semi-implicit, flux-form Eulerian NFT approach, broadly documented in the litera-
ture, cf. [16]. The numerical algorithm is based on the monotone MPDATA transport scheme [17].
For the adiabatic dynamics all prognostic equations in (1) are integrated using the trapezoidal rule,
treating all forcings on the rhs implicitly; frictional and heating terms are computed explicitly, to the
first-order. Together with the curvilinearity of the coordinates, this leads to a complicated elliptic
problem for pressure (see Appendix A in [7] for the complete description) solved iteratively using
the preconditioned generalized conjugate-residual approach—a nonsymmetric Krylov-subspace
solver [18].
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3. THE MADDEN–JULIAN OSCILLATION ANALOGUE

The model’s ability to simulate free topographic Rossby modes in a laboratory set-up is tested
against the analytical solution for the first Rossby normal mode in a closed rectangular �-plane
without lateral forcing (see [19] for a description). The model set-up represents a quasi-two-
dimensional simulation. In this case, the model is run in the computational domain 4.3×2.0×
0.45m, with 128×128×3 gridpoints. Utilizing the dynamical equivalence of the �-plane approx-
imation and the variation of topography in a laboratory, the model parameters are set as follows:
f0≡2� and �≡2�sy/H0; with angular velocity �=2�/T0, the rotating turntable period T0=45s,
slope sy =0.15, and mean depth H0=0.45m. The model is set for frictionless flow with an
unstratified, stagnant ambient state, and is initialized with the analytic solution for a rectangular
basin (cf. [20, p. 147]). The accuracy is measured by comparing the time series of the meridional
velocity component for selected points at mid-channel of the domain with the analytical oscillation
period of the lowest eigenperiod, cf. [19, 20]. We obtain an average oscillation period of 4.0min
compared with the analytic solution of 3.9min. Note, that there can be considerable departures in
real laboratory experiments (see [19] for a discussion).

We modify the testing set-up above by setting a zonally periodic, equatorial �-plane ( f0=0,
�=2�/a, a=3m), by doubling the domain in the meridional direction (y0=4m), and by adding
the lateral forcing described in Equations (2) and (3) together with a zonal background flow
ue=0.05m. The upper and lower boundaries are rigid while the lateral meridional boundaries
are impermeable. With such a set-up, the numerical model mimics the forced nonlinear, rigid-lid
shallow water equations on a �-plane—an archtype for equatorial wave motions.

The model is run for upto 8 h (timestep dt=0.1s), which essentially represents a laboratory-scale
‘climate’ simulation. The principal result is that the lateral undulations, as given in Equations (2)
and (3), generate long-lived horizontal structures (cf. [9]) that resemble a robust low-wavenumber
and low-frequency signature in observed wave spectra. We have performed a series of simulations
exploring the parametric sensitivities. Both the specified lateral forcing and the Coriolis force
are found to be the important elements for attaining long-lived, large-scale coherent structures in
the quasi-two-dimensional set-up. With different forcings on each side of the domain or random
forcings (i.e. altering yS and yN in Equation (2) independently), or only a single frequency forcing,
we do not normally find a dominant low-frequency spectral signal. In contrast, when the oscillatory
boundary forcing is applied only on one side of the domain in a hemispheric �-plane (one boundary
represents the equator) we also obtain an eastward propagating wavenumber-one structure.

In three dimensions, our virtual laboratory tank is represented by a zonally periodic, rectangular
computational domain consisting of 128×128×64 grid points, where we reduce the height to
H0=0.11m, to enhance the vertical resolution (while keeping � as before). Furthermore, we
introduce a bottom boundary layer heating and friction as described in Section 2.

Interestingly, we have been unable to show the existence of the same low-wavenumber and
low-frequency signature in the unstratified three-dimensional simulations, as we have found in the
quasi two-dimensional cases. Instead we observe a broad range of westward propagating signals
(not shown), unless the meridional extent of the domain is decreased to y0=1.5m or below, in
which case the beat frequency �2−�1 of the boundary forcing dominates. However, this changes
dramatically if we introduce strong vertical stratification �e=�0(1−Sz), with S=N 2/g, gravity
g=9.8065ms−2, and a Brunt–Väisällä frequency N =1.566s−1. Now we obtain a significant
eastward propagating wavenumber-one signal with periods of around 1 h. Figure 1 shows the
Hovmoeller diagram of velocity potential anomaly at the height 0.75 H0. The data has been
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Figure 1. Hovmoeller diagram of velocity potential anomaly (×10−3m2 s−1) at the height 0.75 H0 of the
stratified three-dimensional simulation.

averaged over the near-equatorial region ±0.78125m from the mid-channel and low-pass filtered
to remove the beat frequency of the boundary oscillation. Notably, we allow convection to develop
freely in the first 33min of the simulation, before starting to oscillate the lateral boundaries. The
initial period can be clearly seen as a regime change in Figure 1 with the onset of zero or negative
velocity potential.

In a series of three-dimensional simulations we have established that an increased magnitude of
the imposed boundary layer heating can weaken or destroy the formation of the eastward propa-
gating wavenumber-one signal (not shown). We also find that the principal result is independent of
whether the bottom heating is applied uniformly or is zonally asymmetric, cf. [2]. Interestingly, we
also observe a dominant zonal mean zonal flow oscillation (super-rotation) in our three-dimensional
experiments with the same period as identified in the wavenumber-one spectral signal.

4. CONCLUSIONS

The virtual laboratory setup allows one to explore a number of otherwise difficult nonlinear
flow phenomena. Despite its simplifications with respect to natural atmospheric processes, our
�-plane model incorporates convective motions, externally driven large-scale dynamics and surface
boundary layer fluxes due to imposed heating. We identify a number of wave motions in our
simulations.

The principal result is that we obtain long-lived coherent structures as a result of lateral boundary
meanders—as specified in Equations (2) and (3)—in both the quasi-two-dimensional and the three-
dimensional simulations. Our quasi-two-dimensional results are consistent with the findings in
[9] and may be explained analytically using weakly nonlinear theory of Rossby solitary waves
(cf. references in [13]). We confirm that the results are applicable to three-dimensional baroclinic
(equatorial) motions under the constraint of strong stratification N � f (cf. [21, p. 449]). Our
simulations further indicate that strong near-surface perturbations and resulting vertical motions
can destroy the formation of such long-lived structures. These findings may be a step towards
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solving ‘the mystery of the missing equatorial solitons’ [13], where Rossby solitary waves are
readily observed in models and theory but not in the ocean. Hence, for both numerical simulations
and observations our study provides important sensitivities with respect to the dependence and
the destruction of large-scale coherent structures in a three-dimensional, nonlinear flow. Finally,
we conclude that our �-plane model exhibits significant similarities to the MJO of the tropical
troposphere and these will be discussed thoroughly in a forthcoming publication.
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